Technical Support

Augmedium™ Data Sheet

Catalog No. 0123, 0124

Product Description

Augmedium™ is a medium additive which conditions cells prior to induction of recombinant protein expression. This pre-induction conditioner increases the level of chaperone proteins which can improve the fraction of product that accumulates as soluble protein. Augmedium™ is specifically intended for use with strains in which the target protein accumulates as an insoluble aggregate. Augmedium™ is supplied as a powder for preparation of 50x concentrated stock solutions. It is available in 100g and 500g amounts.

Product Specifications
Unit Size 100mL Stock, 500mL Stock (50x solution)
Shipping Ambient
Dry Powder Storage Store at 0°C
Stable for 2 years
Liquid Concentrate
Storage Short Term
Store at 4°C
Stable for 2 months
Liquid Concentrate
Storage Long Term
Store at -20°C
Stable for 6 - 12 months

Instructions for Use

Preparation of a 50x Stock Solution

Dissolve the contents of the 100 mL packet or 500 mL packet in 100mL or 500mL deionized water, respectively. Sterilize by filtration. Store at 4°C for near-term use and -20°C for long-term use.

Using Augmedium™ to Enhance Expression:

1. Inoculate 10 ml of desired expression media (we recommend using Turbo Broth or Turbo Prime Broth™) supplemented with the appropriate antibiotic with a single colony of the expression strain. Incubate overnight at 37°C.
2. Use the overnight culture to inoculate six 250 ml baffle bottom flasks containing 25 ml medium each. Incubate at 30°C until the density reaches an OD600 of 0.9.
3. Add 0.5, 0.25, 0.125, 0.0625, and 0.03125 mL 50x Augmedium™ to five flasks, respectively. The sixth flask will be the untreated control. Incubate all flasks for 20 min.
4. To each of the 6 flasks, add IPTG (or other inducer as per the expression system) to a final concentration of 1 mM. Incubate for 3 hours.
5. Harvest the cultures by centrifugation at 3,000 xg for 20 minutes. Store the pellets at -20°C or -80°C until ready to process.
6. Prepare cell-free extracts by mechanical, chemical or enzymatic disruption, depending on preference and requirements of expression system. Clarify the extract by centrifuging at 30,000 xg for 30 minutes. Preserve the supernatant for next step.
7. Determine the amount of soluble protein in the supernatant by one of the following means:

a. SDS-PAGE with Coomassie or Silver Stain – Load equal amounts of protein in each lane. Compare the relative level of target protein accumulated.

b. Immunoblot – Load equal protein per lane of a gel or well of a slot/dot blot. The primary antibody used can be to an affinity tag or to the target protein.

c. Functional Assay – Perform a functional assay using equal amounts of protein in the assay.

8. Select the level of Augmedium™ which yields the highest level of target protein.
9. Repeat process with optimum conditions to express desired amount of protein.

*Note:* It may be necessary to perform a time-course analysis to determine the optimum pre-condition period for any give protein and host/vector system.

Material Safety Data

FOR RESEARCH USE ONLY. NOT INTENDED OR APPROVED FOR HUMAN, DIAGNOSTICS OR VETERINARY USE. Do not ingest, swallow or inhale. Do not get in eyes, on skin, or on clothing. Wash thoroughly after handling. For complete safety information see full Material Safety Data Sheet.


1. Ellis, R. J. and van der Vies, S. M. 1991. Annu. Rev. Biochem. 60:321:347.
2. Hartl, R. U., Hlodan, R., and Langer, T. 1994 Trends Biochem. Sci. 19:20-25.
3. Hendrick, J. P., and Hartl, F. U. 1993. Annu. Rev. biochem. 62:349-384.
4. Blum, P., Velligan, M., Lin, N., and Martin, A. 1992. BioTechnology 10:301-304.
5. Caspers, P., Stieger, M., and Burn, P. 1994. Cell. Mol. Biol. 40:635-644
6. Lee, S. C., and Olins, P. O. 1992. J. Biol. chem.. 267:2849-2852.
7. Perez-Perez, J., Martinez-Caja, C., Barbero, J. L., and Gutierrez. J. 1995. Biochem. Biophys. Res. Commun. 210:524-529.
8. Philips, G. J., and Silhavy, T. J. 1990. Nature 344:882-884.
9. Amrein, K. K., Takacs, B., Stieger, M., Molnos, J., Flint, N. A., and Burn, P. 1995. Proc. Natl. Acad. Sci. U.S.A. 92:1048-1052
10. Bross. P., Andresen, B. S., Winter, V., Kraulte, F., Jensen, T. G., Nandy, A., Kalvraa, S., Ghisla, S., Bolund, L., and Gregersen, N. 1993. Biochim. Biophys. Acta 1182:264-274.
11. Dale, G. E., Schonfeld, H. J., Langen, H., and Stieger, M. 1994. Protein Eng. 7:925-931
12. Duenas, M., Vazquez, J., Ayala, M., Soderlind, E., Ohlin, M., Perez, L., Borrebaeck, C. A. K. and Gavilondo, J. V. 1994. BioTechniques 16:476-483.
13. Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. 1989. Nature 337:44-47.
14. Wynn, R. M., Davie, J. R., Cox, R. P., and chuang, D. T. 1992. J. Biol. Chem. 267:12400-12403.
15. Thomas, J. G. and Baneyx, F. 1996. J. Biol. Chem. 271:11141-11147
16. Harcum, S. W. and Bentley, W. E. 1993. Biotechnol. Bioeng. 42:675-685.
17. Schneider, E., Thomas, J., Bassuk, J., Sags, E., and Baneyx, F. 1997. Nature Biotechnol. 15:581-585.
18. Gill, R. T., DeLisa, M. P., Valdes, J. J., and Bentley, W. E. 2001. Biotech. Bioeng. 72:86-95.